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Global-Regularized Federated Multi-Task Learning

Objective

Motivation

Pragmatic constraints in federated learning:

fairness, robustness, privacy, security, etc. Enforce personalized models

to be close to w*

For each device k € [K],

min  h (v, w*) = F(v,) +
Vk

st. w*¥ € argmin G (Fl(w), e FK(W)) w* is the optimal global model
w

Simultaneously satisfying these (competing) constraints
can be exceptionally difficult

~llve = wHI?
> 1k

This work: constraints between accuracy, fairness
(performance uniformity), and robustness (against data
and model poisoning attacks)*

Solver

— At each round, first randomly sample a subset of devices S,. For each device in S;:

t t t t t t
w, < UPDATE_GLOBAL (w', VF,(w")), A :=w, —w
w* € argmin G (Fy(w), ...,FK(w)) k ( k ) k k
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A scalable, simple personalization add-on for any federated global solver
Preserves the practical properties of the global solver (communication, privacy)
With convergence guarantees
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* Fairness: the uniformity of performance distribution
Robustness: the average test accuracy, across benign devices.

Ideas 52 K
H(0,6?) AF = K
) .. . Vi ——— X, ={x{{,...,X n 2 a 2 _ 2
Properly modeling statistical heterogeneity Ky t= e i) K2 + =5 (12 = 72)
. . ) . , T: task unrelatedness; 7. strength of the attack
Method: federated multi-task learning 0 220D, vy AOD |y — (s x)
: ’ "+ Test accuracy and variance are jointly minimized with 4*
— %k
<~ A simple and effective multi-task learning objective * 2_) o A% =0 1* 5 0
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clean adversarial Results hold for linear problems
. L. local 0.15 - local
Theoretically and empirically, we show that 0.2 —>— Ditto (\*) —>— Ditto (X") () Ditto or than | . obal
. . : global 5 0107 global | itto is superior than learning globa

e Persor)allzatlon (Ditto) can offer inherent robustness Sor - or local models

and falrn.ess. - | oo T 000 i (i) A* should increase as the increase
~ Personalization (Ditto) is particularly useful to ——> more related 008 —» more related ,

2 i 6 s 1w "% i 6 & 10 of device relatedness (1/7)

handle multiple constraints simultaneously

1/7 (device relatedness) 1/7 (device relatedness)
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Evaluation

LEAF: A Benchmark for Learning in Federated Settings

FEMNIST, clean data

5 FEMNIST, 20% corrupted devices
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Robust methods are not fair (with high variance)
Ditto is both robust and fair
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Future Work

~ Do other personalization formulations offer similar benefits?

~  What is the optimal personalization formulation for FL?

~ Can we further characterize the effect of personalization in terms of
fairness, robustness, privacy, etc?

Ditto is more robust
than strong
baselines under
various attacks

A1: data corruption
A2: sending random
Gaussian updates
A3: data corruption +
model replacement

Code: https:/github.com/litian96/ditto ArXiv: https://arxiv.orq/pdf/2012.04221.pdf
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