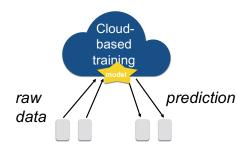
Federated Optimization in Heterogeneous Networks

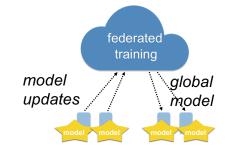
Tian Li (CMU), Anit Kumar Sahu (BCAI), Manzil Zaheer (Google Research), Maziar Sanjabi (Facebook AI), Ameet Talwalkar (CMU & Determined AI), Virginia Smith (CMU)

Motivation

Federated learning: privacy-preserving machine learning training in heterogeneous, (potentially) massive networks

Applications: voice recognition/face detection on mobile phones, predictive maintenance, personalized healthcare on wearable devices, applications in smart homes, etc.





Two of the major challenges

Systems heterogeneity

- Significant variability in terms of systems characteristics on each device in the network (hardware, network, power, etc)
- Current methods do not allow devices to perform variable amounts of local work

Statistical heterogeneity

- Non-identically distributed data across the network
- Lack convergence guarantees and may diverge in practice

Key Ideas

Key idea: Dropping stragglers or naively incorporating partial updates from stragglers implicitly increase statistical heterogeneity

Method: Simple algorithmic modifications to current state-of-the-art method (adding a proximal term to the local subproblem while tolerating partial updates)

Contributions

- (Theoretically) Provide convergence guarantees (rates as functions of statistical and systems heterogeneity)
- (Practically) Allow for more robust convergence (improved absolute accuracy by 22% in highly heterogeneous environments)

FedProx: a Framework for Federated Optimization-

Global objective: $\min f(w) = \mathbb{E}_k [F_k(w)]$

Local objective on device k: $\min_{W_k} F_k(W_k, X_k)$

Idea 1: Allow for partial work to be performed on local devices based on systems constraints

Idea 2: At each round, each selected device solves a *modified* local subproblem:

$$\min_{W_k} F_k(W_k, X_k) + \frac{\mu}{2} \|W_k - W^t\|^2$$

A proximal term

Generalization of the popular method FedAvg
 (FedAvg + allowing for variable local work + proximal term = FedProx)

 General: Can use any local solver; theory covers both convex and non-convex losses

The proximal term (1) safely incorporates noisy updates from variable local work; (2) explicitly limits the impact of local updates; (3) makes the method more amenable to theoretical

Proposed FedProx method

Until convergence:

- 1. Server samples devices, and sends the current global model to all chosen devices
- 2. Each device solves the following subproblem by performing variable local updates based on the underlying systems constraints

$$\min_{W_k} F_k(W_k, X_k) + \frac{\mu}{2} \|W_k - W^t\|^2$$

3. Server aggregates local updates and forms a new global model

Convergence Analysis

Characterize statistical heterogeneity: B-dissimilarity $B(w) = \sqrt{\frac{1}{2}}$

 $= \sqrt{\frac{\mathbb{E}_k \left[\|\nabla F_k(w)\|^2 \right]}{\|\nabla f(w)\|^2}}$

B quantifies

Assumptions

Assumption 1: Bounded Dissimilarity
Assumption 2:

Modified Local subproblem is convex & smooth

Assumption 3:

Each local subproblem is solved inexactly to some optimality

introduce γ_k^t -inexactness to capture systems heterogeneity

[Theorem] Obtain suboptimality ε , after **T** iterations, with:

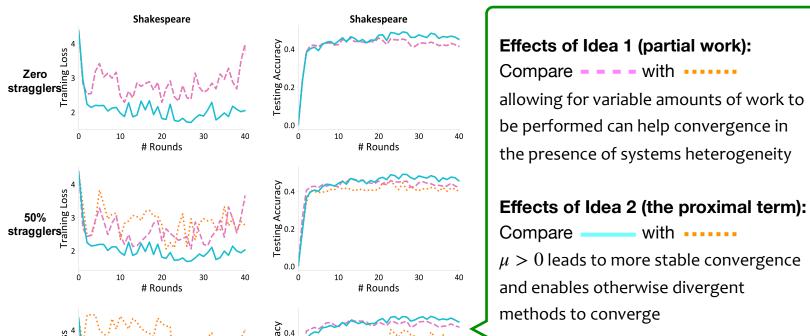
$$T = O\left(\frac{f(w^0) - f^*}{\rho \varepsilon}\right)$$

 ρ : related to μ , B, γ_k^t

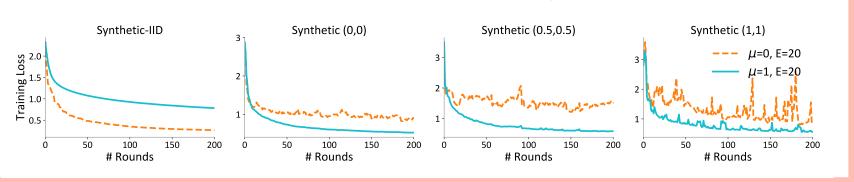
- Rate is general
- Covers both convex, and non-convex loss functions
- Independent of the local solver
- Agnostic of the sampling method
- The same asymptotic convergence guarantee as SGD

Evaluation

LEAF: A Benchmark for Learning in Federated Settings (website: <u>leaf.cmu.edu</u>)



Increasing statistical heterogeneity leads to worse convergence; Setting μ > 0 can help to combat this



Future Work

- $^{\circ}$ How to tune μ automatically (hyper-parameter optimization for federated learning)?
- Can we quantify the statistical heterogeneity a priori and leverage it for improved performance?
- Better privacy metrics and mechanisms for federated learning?

·····

Federated Learning: Challenges, Methods, and Future Directions (Signal Processing Magazine, arxiv.org/abs/1908.07873)

Code & Manuscript: www.cs.cmu.edu/~litian/; Github: github.com/litian96/FedProx