

Tilted Empirical Risk Minimization

Tian Li* (CMU), Ahmad Beirami* (Facebook AI), Maziar Sanjabi (Facebook AI), Virginia Smith (CMU)

TERM:

- increases or decreases the influence of outliers to enable fairness or robustness
- can be viewed as a smooth approximation to quantile losses
- can be solved efficiently with batch and stochastic optimization methods
- can be used for a multitude of applications, achieving competitive with existing solutions tailored to these individual problems, and enable entirely new applications

Properties

Thing samples to magnify/suppress outliers

$$\tilde{R}(t;\theta) = \frac{1}{t} \log\left(\frac{1}{n} \sum_{i=1}^{n} e^{tf(x_i;\theta)}\right)$$

$$\sum_{i=1}^{N} w_i(t;\theta) \nabla_{\theta} f(x_i;\theta), \text{ and } w_i(t;\theta) = \frac{e^{tf(x_i;\theta)}}{\sum_{j \in [N]} e^{tf(x_j;\theta)}}$$

Trade-off between average loss and max-/min-loss

- as t moves from 0 to $+\infty$, the **average loss** will increase, and the **max-loss** will decrease
- as t moves from 0 to $-\infty$, the **average loss** will increase, and the **min-loss** will decrease
- [Empirical bias-variance tradeoff] as *t* increases, the **average loss** will increase, and the **loss variance** will decrease => better generalization

Approximation of quantile losses

quantile losses:
$$\arg\min_{\theta} Q(a;\theta) := \frac{1}{N} \sum_{i \in [N]} \mathbb{I}\{f(x_i;\theta) \ge a\}$$

quantile loss solutions can be approximated by TERM solutions

 $f_1(\theta) = (\theta + 0.2)^2, f_2(\theta) = (\theta - 0.2)^2 + 0.1, f_3(\theta) = (\theta - 1.2)^2$

TERM objectives for a squared loss problem with N=3. Tilted losses recover min-loss, avgloss, and max-loss. TERM is smooth for all finite t and convex for positive t. TERM solutions approximate median-loss minimizer.

See paper for complete theoretical results

Applications

On real-world ML applications, TERM is superior than (or competitive with) existing, problem-specific state-of-the-art solutions

Objectives	imbalance, clean		imbalance, noisy	
	minority	overall	minority	overall
ERM	0.503	0.888	0.240	0.831
GCE	0.503	0.888	0.324	0.849
LearnReweight	0.800	0.904	0.532	0.856
RobustReaRisk	0.622	0.906	0.051	0.792
FocalLoss	0.806	0.918	0.565	0.890
TERM	0.836	0.924	0.806	0.901

TERM is able to handle compound issues, e.g., the existence of noisy samples and imbalanced classes

see paper for all results

Future Work

- Other applications of the TERM framework (e.g., meta-learning, GAN training)
- Other properties of TERM (e.g., adversarial robustness) •
- Generalization of the TERM objective with respect to t •
- Further connections with other risks (DRO, Conditional Value-at-Risk, Invariant Risk Minimization, etc)

Code: <u>https://github.com/litian96/TERM</u>

