Private Adaptive Optimization with Side Information

Tian Li (CMU)

Manzil Zaheer (DeepMind)

Sashank Reddi (Google Research)

Virginia Smith (CMU)

Motivation

- Adaptive optimizers (e.g., Adam, AdaGrad, RMSProp) are useful for a variety of ML tasks
- However, performance may degrade significantly when trained with differential privacy (DP), especially when the model dimension is large

How to effectively adapt to the geometry of gradients under DP?

directly plug in private gradients to estimate the statistics ?

first privatize the gradients

$$\tilde{g}^{t} \leftarrow \frac{1}{|B|} \left(\sum_{i \in B} \operatorname{clip} \left(g^{i,t}, C \right) + \mathcal{N} \left(0, \sigma^{2} C^{2} \right) \right)$$

then plug in private gradients to any adaptive optimization methods

$$\begin{split} m^{t} \leftarrow \beta_{1} m^{t} + (1 - \beta_{1}) \tilde{g}^{t}, \ v^{t} \leftarrow \beta_{2} v^{t} + (1 - \beta_{2}) \left(\tilde{g}^{t} \right)^{2} \\ w^{t+1} \leftarrow w^{t} - \alpha \frac{m^{t}}{\sqrt{v^{t}} + \epsilon} \end{split}$$

estimates can be very noisy!

AdaDPS: Private Adaptive Optimization with Side Information

With public data

Estimate gradient statistics on public data at each iteration

obtained via 'opt-out' users or proxy data

$$\tilde{g}^{t} \leftarrow \frac{1}{|B|} \left(\sum_{i \in B} \operatorname{clip}\left(\frac{g^{i,t}}{A}, C\right) + \mathcal{N}\left(0, \sigma^{2} C^{2}\right) \right), A \approx \sqrt{\mathbb{E}\left[g^{2}\right]} + \epsilon$$

preconditioning before privatizing the gradients

Without public data

Non-sensitive common knowledge about the training data

e.g., token frequencies in NLP

A encodes how predictive each coordinate is

AdaDPS: Private Adaptive Optimization with Side Information

Convergence:

$$\tilde{g}^{t} \leftarrow \frac{1}{|B|} \left(\sum_{i \in B} \operatorname{clip}\left(\frac{g^{i,t}}{A}, C\right) + \mathcal{N}\left(0, \sigma^{2} C^{2}\right) \right), A \approx \sqrt{\mathbb{E}\left[g^{2}\right]} + \epsilon$$

$$\right) + O\left(\frac{1}{\sqrt{T}} \mathbb{E}\left[\|\mathcal{N}\|_{A}^{2}\right]\right)$$

reduced DP noise when the gradients are sparse

- A encodes how predictive each coordinate is
- preconditioning before privatizing the gradients

Empirical Results

centralized training sample-level DP

federated learning client-level DP

Future Works

- \bigcirc
- \bigcirc

Full paper: Code:

Exploring other approaches of reducing noise (e.g., with tree aggregation) Generalizing our approach without public data to arbitrary neural networks

arxiv.org/abs/2202.05963

github.com/litian96/AdaDPS