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Motivation

o Adaptive optimizers (e.g., Adam, AdaGrad, RMSProp) are useful for a
variety of ML tasks

o However, performance may degrade significantly when trained with
differential privacy (DP), especially when the model dimension is large
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How to effectively adapt to the geometry of gradients under DP?

directly plug in private gradients to estimate the statistics ?

first privatize the gradients

g < ‘;‘ (Z clip (gi”, C) + N (0,02C2)>

estimates can be very noisy!
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AdaDPS: Private Adaptive Optimization with Side Information

With public data Without public data
Estimate gradient statistics on public Non-sensitive common knowledge about
data at each iteration the training data
o obtained via ‘opt-out’ users or proxy o e.g., token frequenciesin NLP
data
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A encodes how predictive each coordinate is

preconditioning before privatizing the gradients



AdaDPS: Private Adaptive Optimization with Side Information

Convergence:

(informal) rate: O (\/}) + O (\/1? - [“«1’”@])

reduced DP noise when the gradients are sparse
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Empirical Results

centralized training

sample-level DP
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federated learning

client-level DP

StackOverflow, private
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Future Works

o Exploring other approaches of reducing noise (e.g., with tree aggregation)

o Generalizing our approach without public data to arbitrary neural networks

Full paper:  arxiv.org/abs/2202.05963

Code:  github.com/litiang6/AdaDPS
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