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Challenges

min
w

F1 FNF2
…p1 +p2 +pN+( )objective:

Can	we	devise	an	efficient	federated	optimization	method	to	
encourage	a	more	fair	(i.e.,	more	uniform)	distribution	of	the	
model	performance	across	devices?
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A	tunable	framework	( :	previous	objective;	 :	minimax	fairness)	q = 0 q = ∞
Theory	

Fair	Resource	Allocation	Objective

q-FFL:	
q + 1 q + 1 q + 11

q + 1min
w

F1 FNF2
…p1 +p2 +pN+( )

Inspired	by	𝛼-fairness	for	fair	resource	allocation	in	wireless	networks

q
Generalization	guarantees	
Increasing		 	results	in	more	‘uniform’	accuracy	distributions	(in	
terms	of	various	uniformity	measures	such	as	variance)
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Efficient	Solver

Challenges	

Different	fairness/accuracy	
tradeoffs:	different	q’s

Heterogeneous	networks,	
expensive	communication

Dynamically	estimate	the	step	
sizes	associated	with	different	 ’sq

Allow	for	low	device	
participation,	local	updating

High	level	ideas
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slightly	decrease	
the	accuracy	of	the	
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on	average,	reduce	the	variance	of	accuracy	across	all	
devices	by	45%

solving	the	objective	orders-of-magnitude	more	quickly	
than	other	baselines
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q-FFL	Extended:	meta-learning
Fair	meta-learning	(q-FFL+MAML):	fair	initializations	across	tasks

Dataset	 Objective	 Average	 Worst	10% Best	10% Variance

Omniglot q = 0 79.1 61.2 94.0 93

q = .1 79.3 62.5 93.8 86

Many	other	scenarios

More	broadly,	an	alternative/generalization	of	minimax	optimization
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