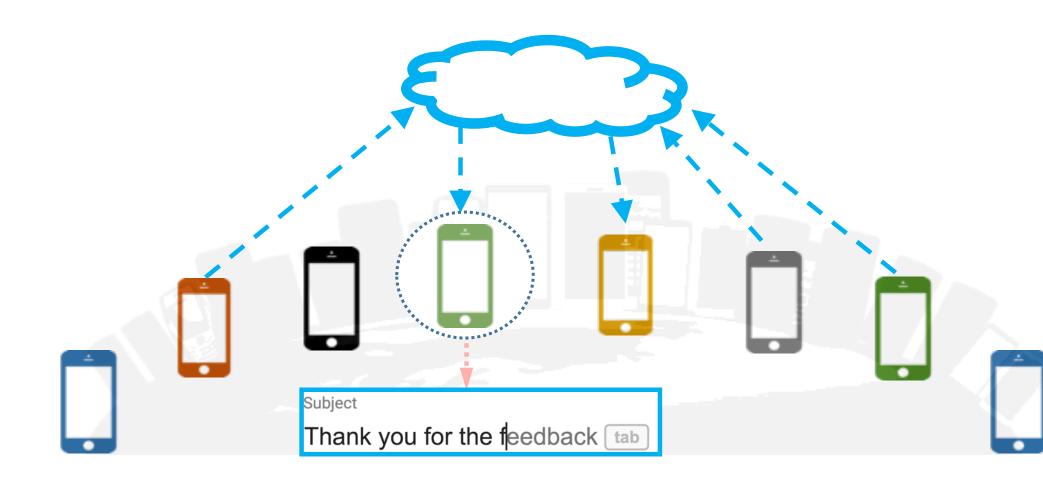
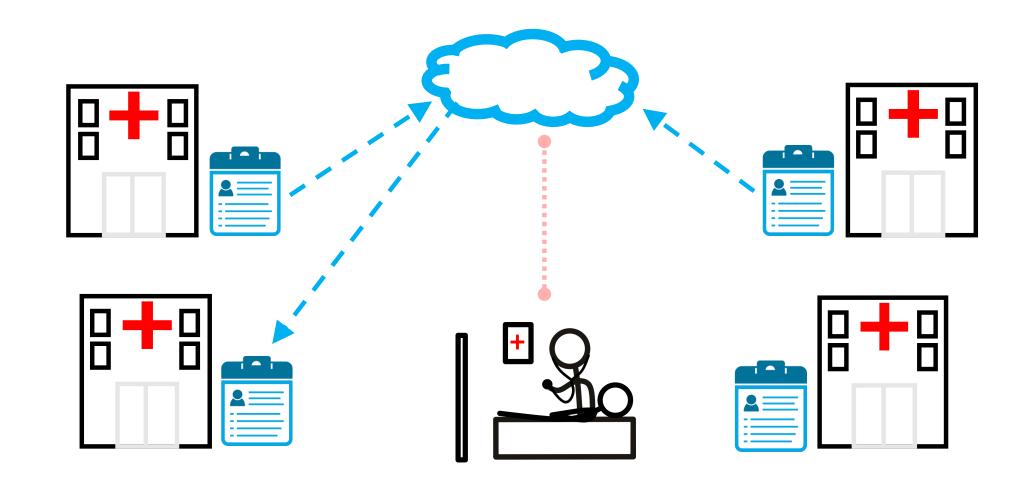
Fair Resource Allocation in Federated Learning

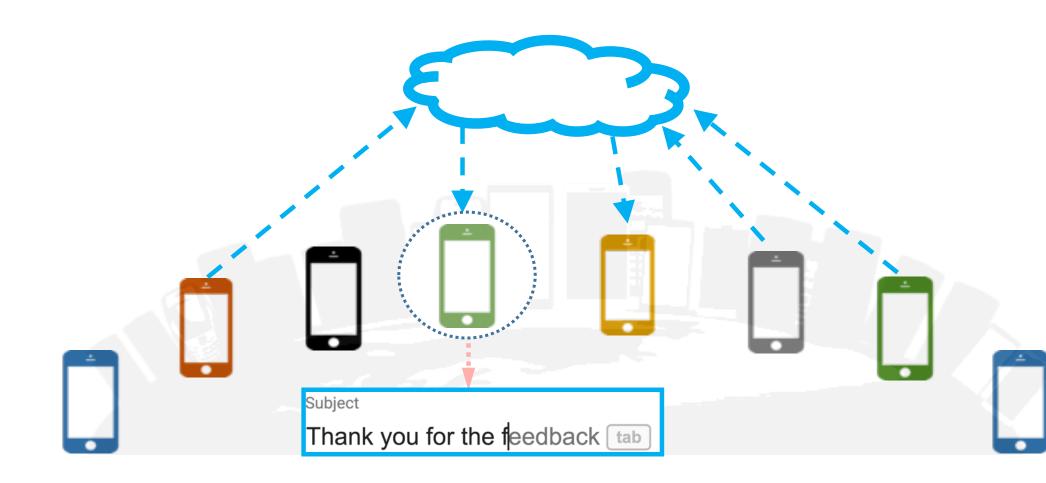
Tian Li (CMU), Maziar Sanjabi (Facebook AI), Ahmad Beirami (Facebook AI), Virginia Smith (CMU)

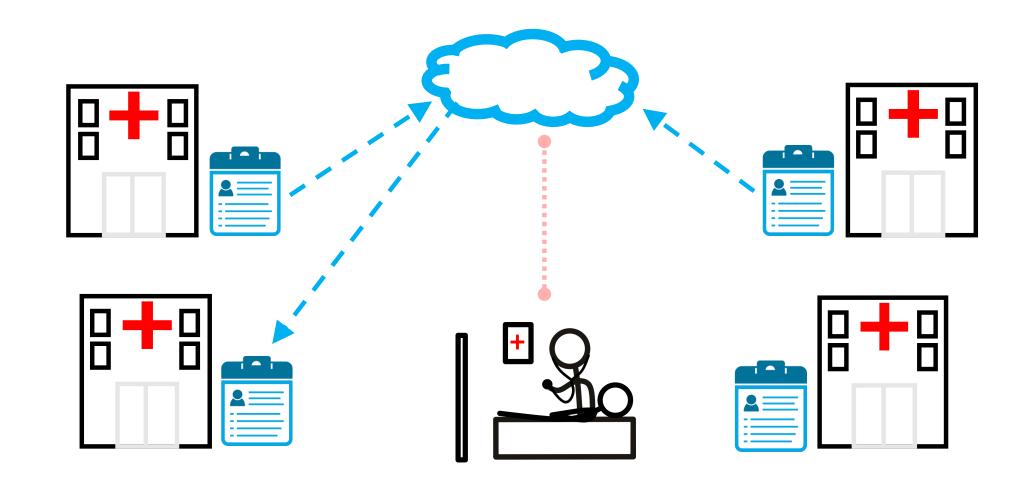
tianli@cmu.edu

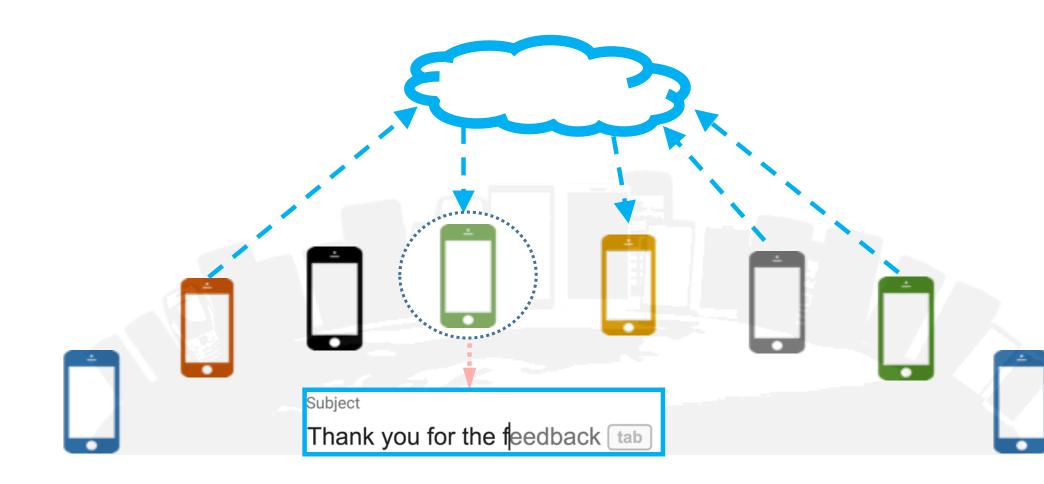


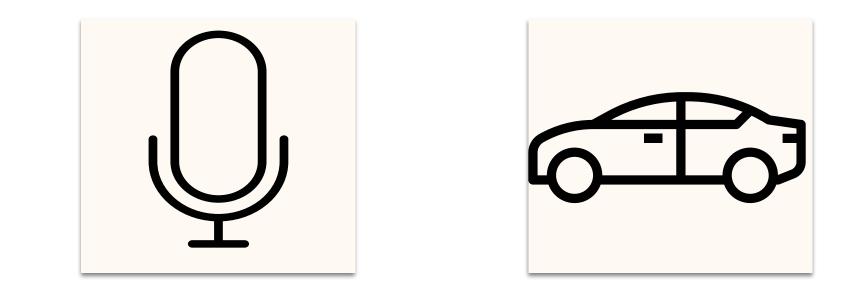


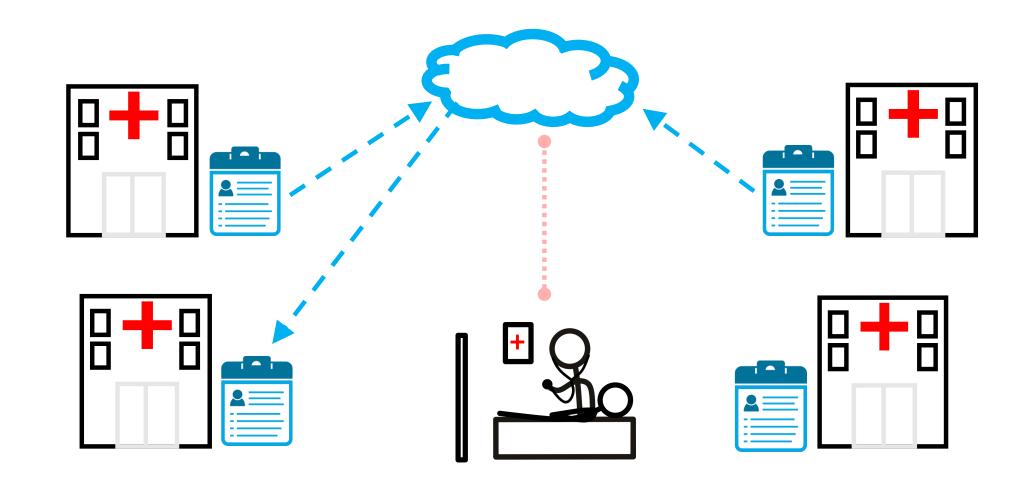


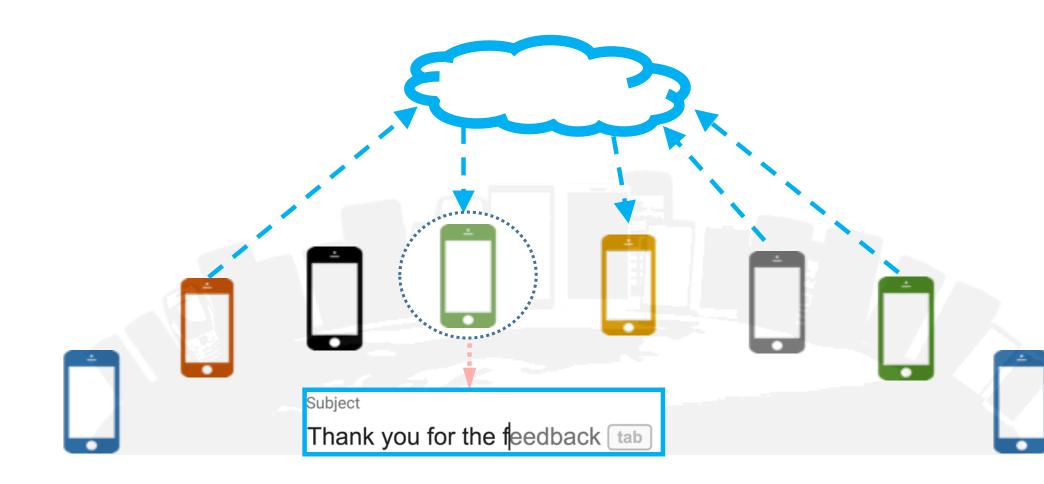


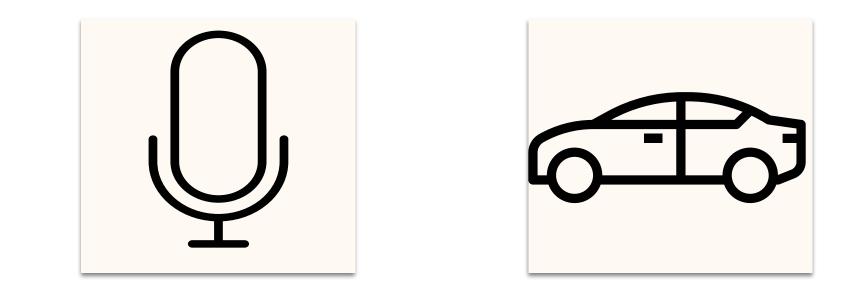


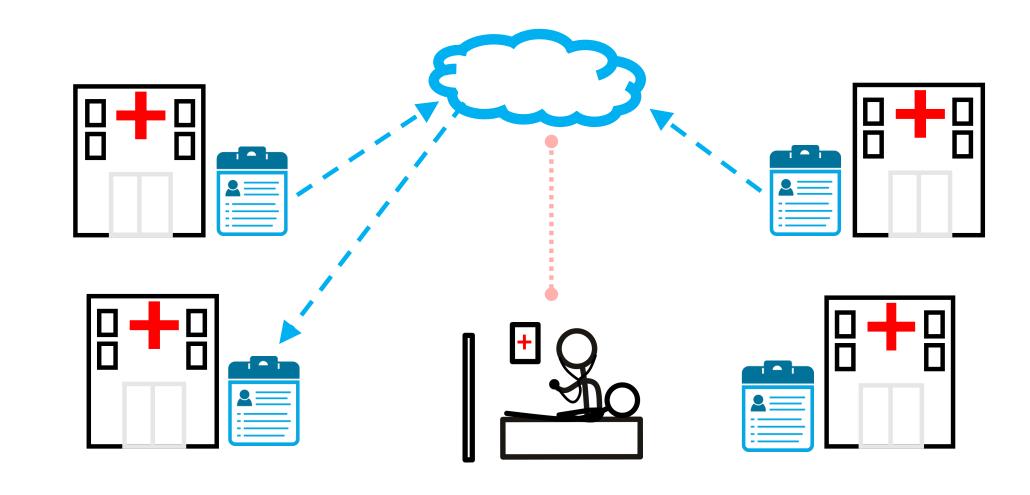


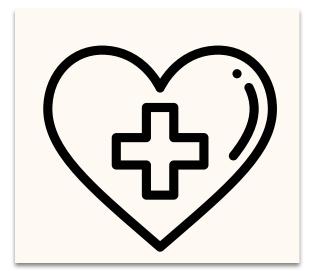


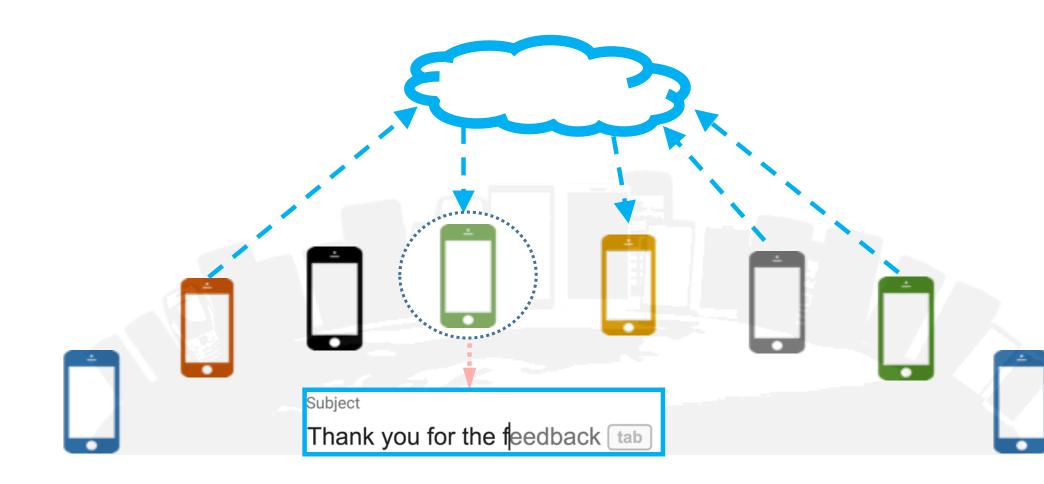


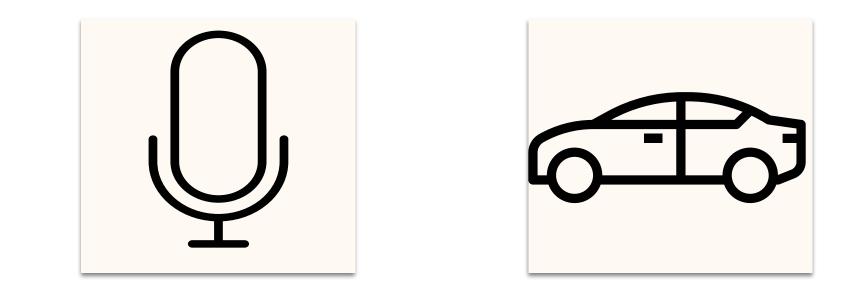


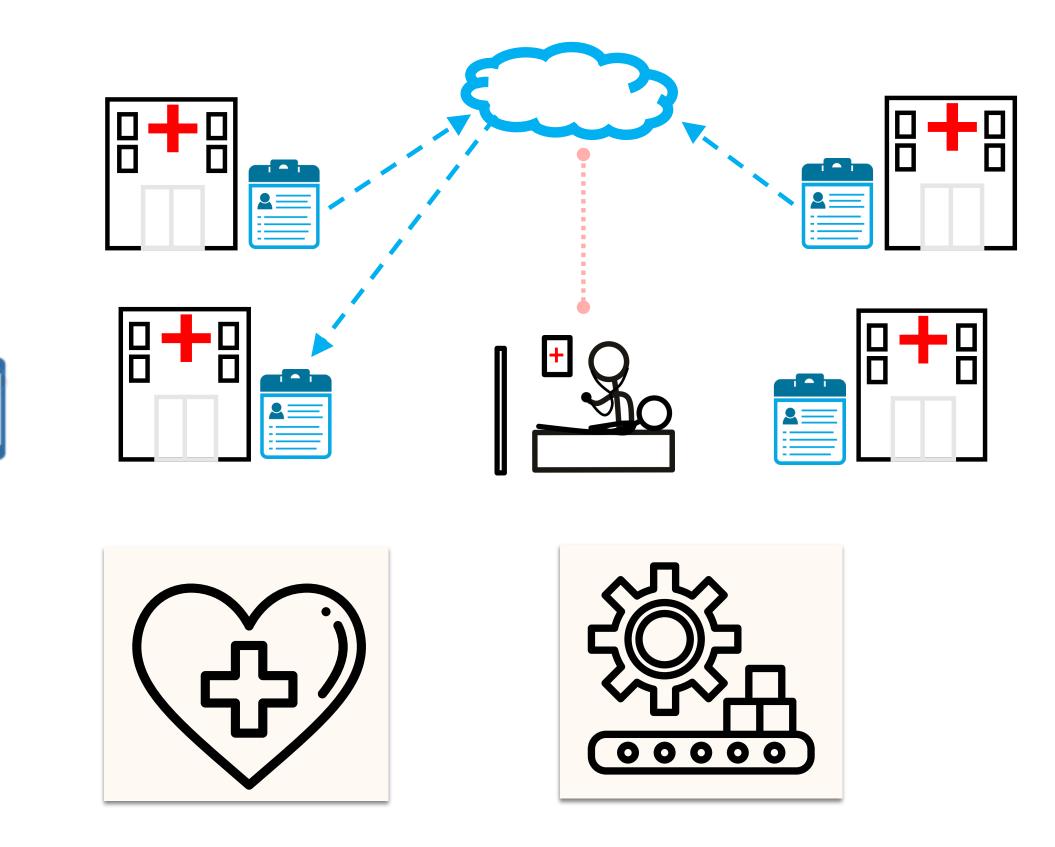












 ${\mathcal W}$

Challenges objective: $\min_{w} \left(p_1 F_1 + p_2 F_2 + \cdots + p_N F_N \right)$

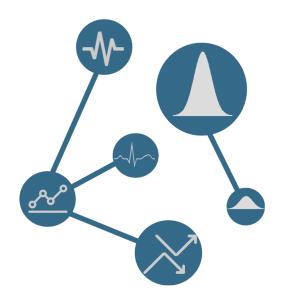
Challenges objective: min $\left(p_1 F_1 + p_2 F_2 + \cdots + p_N F_N\right)$

 \mathcal{W}

no accuracy guarantee for individual devices

Challenges objective: min $\left(p_1 F_1 + p_2 F_2 + \cdots + p_N F_N\right)$

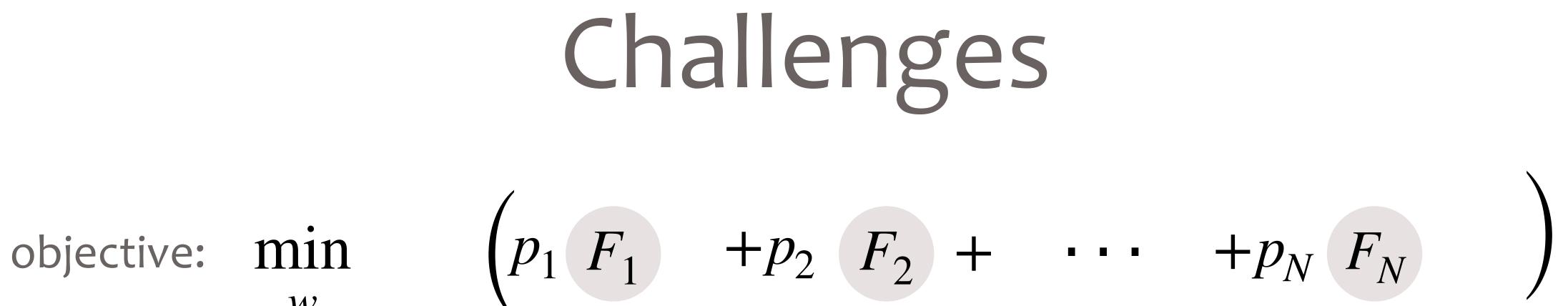
no accuracy guarantee for individual devices



model performance can vary widely

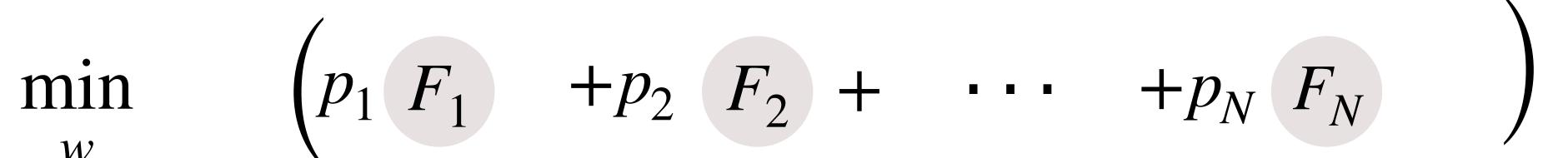
Can we devise an efficient federated optimization method to encourage a more fair (i.e., more uniform) distribution of the model performance across devices?

model periormance can var



Fair Resource Allocation Objective

Fair Resource Allocation Objective



Fair Resource Allocation Objective q-FFL: $\min_{w} \frac{1}{q+1} \left(p_1 F_1^{q+1} + p_2 F_2^{q+1} + \cdots + p_N F_N^{q+1} \right)$

Fair Resource Allocation Objective q-FFL: $\min_{w} \frac{1}{q+1} \left(p_1 F_1^{q+1} + p_2 F_2^{q+1} + \cdots + p_N F_N^{q+1} \right)$

• Inspired by α -fairness for fair resource allocation in wireless networks

Fair Resource Allocation Objective **<u>q-FFL:</u>** $\min_{w} \frac{1}{q+1} \left(p_1 F_1^{q+1} + p_2 F_2^{q+1} + \cdots + p_N F_N^{q+1} \right)$

- \circ Inspired by α -fairness for fair resource allocation in wireless networks

Fair Resource Allocation Objective **<u>q-FFL:</u>** $\min_{w} \frac{1}{q+1} \left(p_1 F_1^{q+1} + p_2 F_2^{q+1} \cdots + p_N F_N^{q+1} \right)$

- \circ Inspired by α -fairness for fair resource allocation in wireless networks
- Theory

Fair Resource Allocation Objective **<u>q-FFL:</u>** $\min_{w} \frac{1}{q+1} \left(p_1 F_1^{q+1} + p_2 F_2^{q+1} \cdots + p_N F_N^{q+1} \right)$

- \circ Inspired by α -fairness for fair resource allocation in wireless networks
- Theory

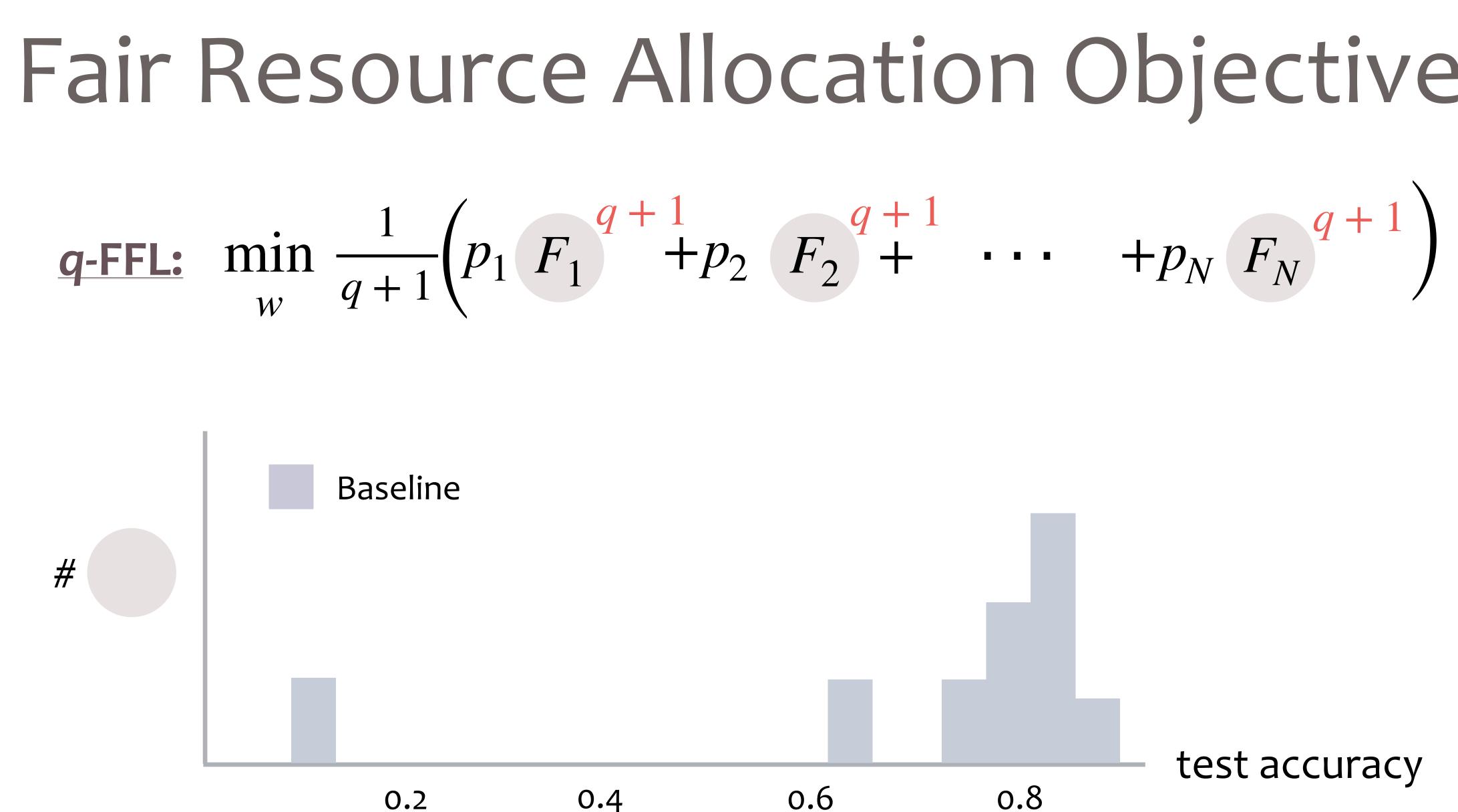
Fair Resource Allocation Objective **<u>q-FFL:</u>** $\min_{w} \frac{1}{q+1} \left(p_1 F_1^{q+1} + p_2 F_2^{q+1} \cdots + p_N F_N^{q+1} \right)$

- \circ Inspired by α -fairness for fair resource allocation in wireless networks
- Theory

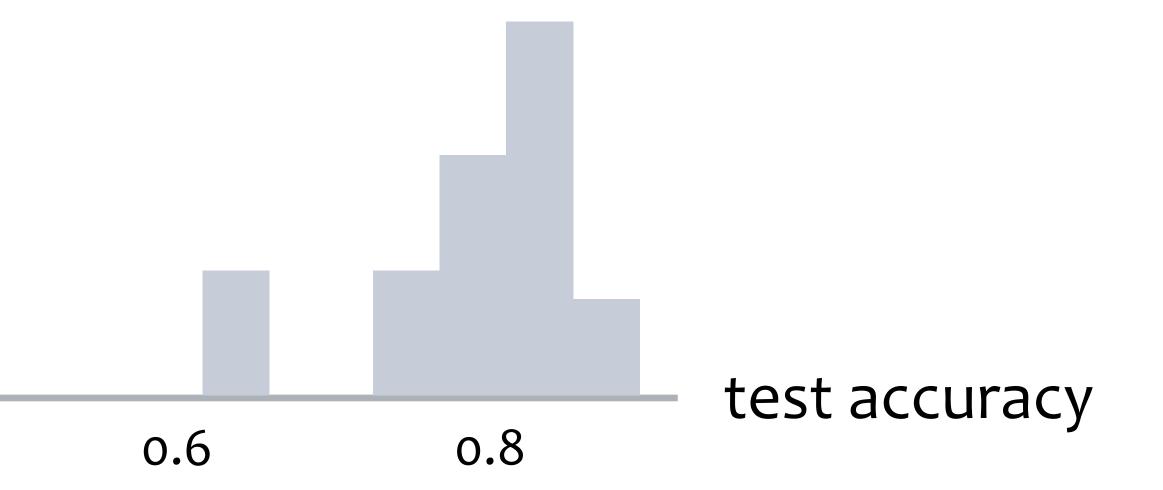
Generalization guarantees Increasing *q* results in more 'uniform' accuracy distributions (in terms of various uniformity measures such as variance)

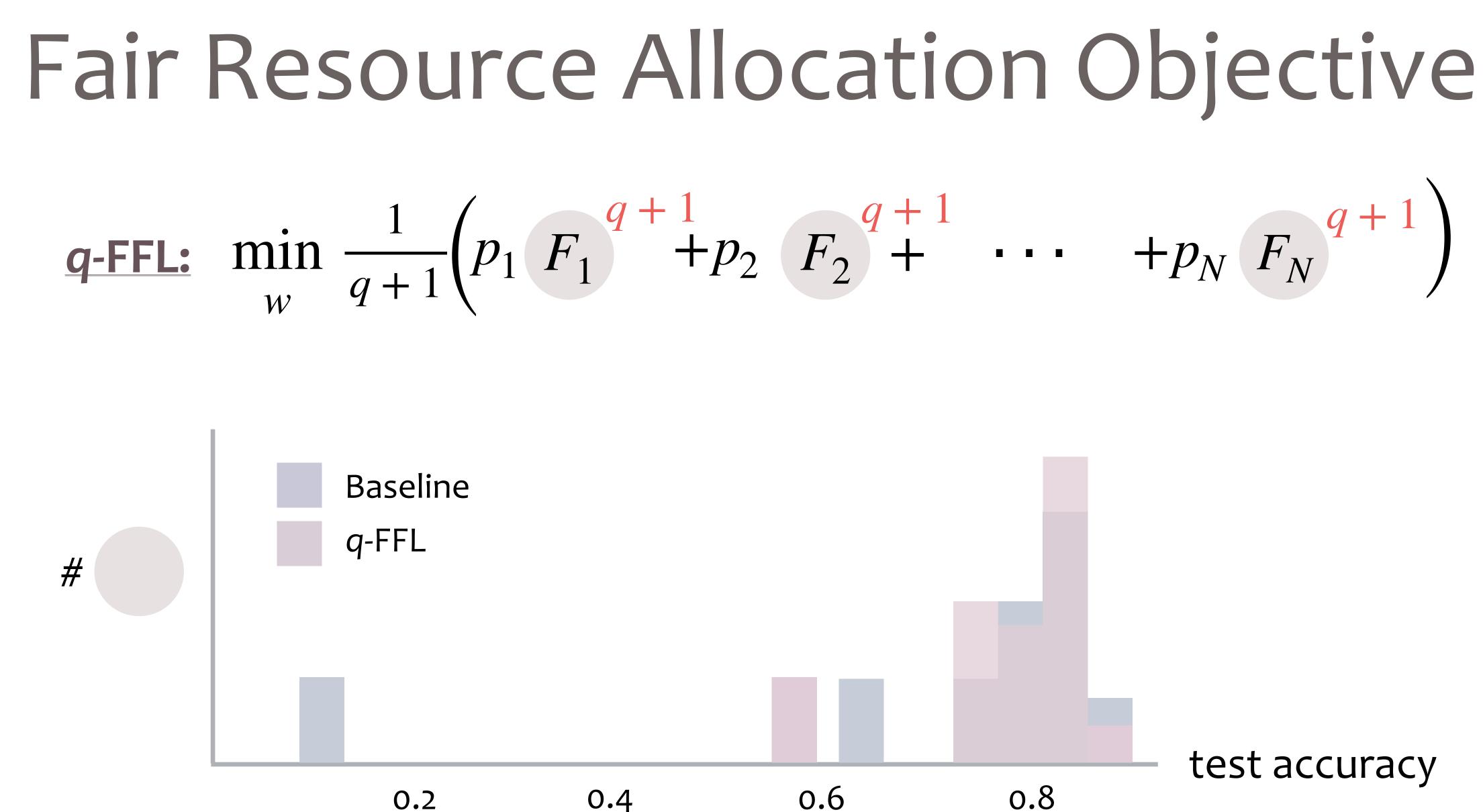
Fair Resource Allocation Objective q-FFL: $\min_{W} \frac{1}{q+1} \left(p_1 F_1^{q+1} + p_2 F_2^{q+1} + \cdots + p_N F_N^{q+1} \right)$

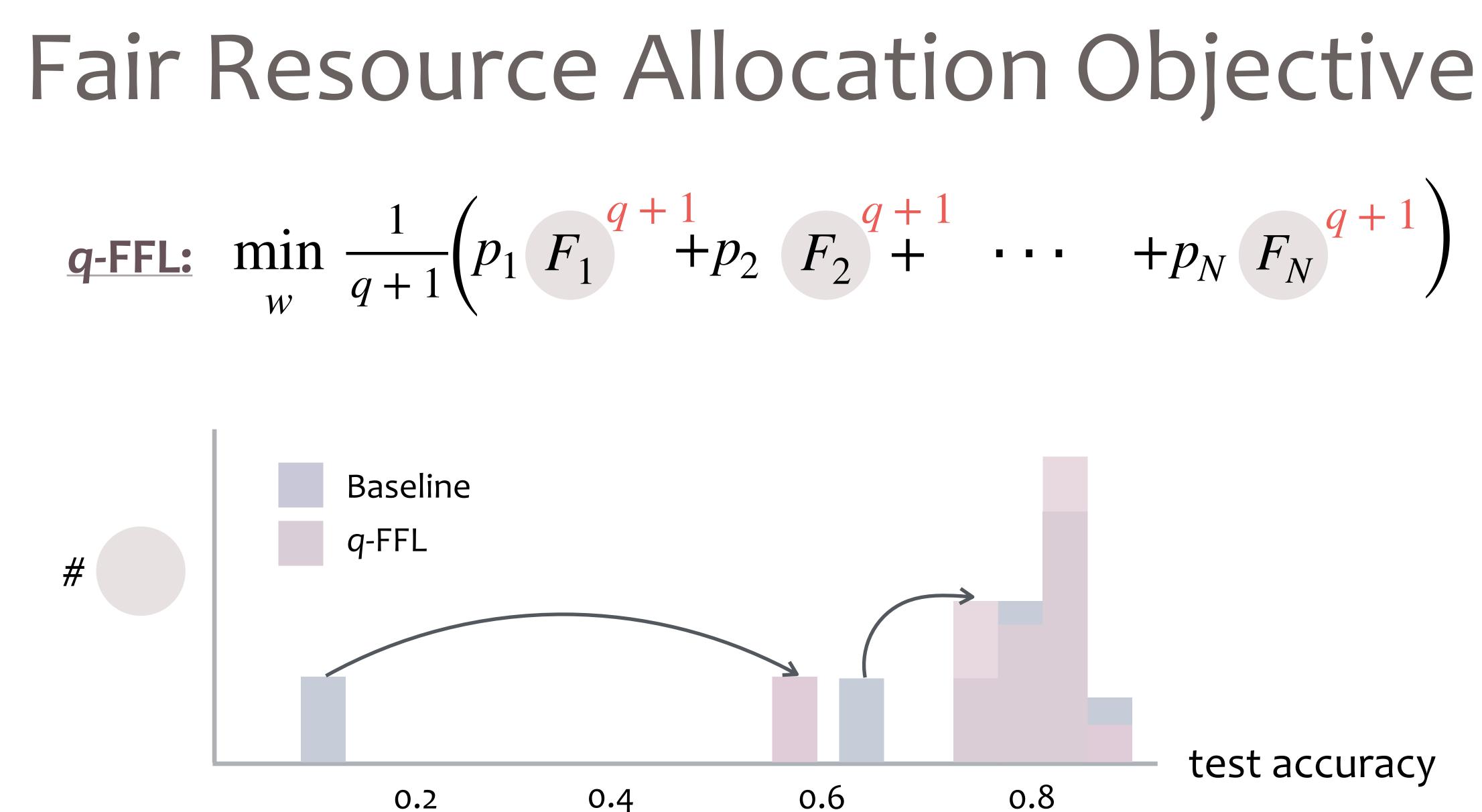
Fair Resource Allocation Objective <u>q-FFL:</u> \min_{w} \frac{1}{q+1} \left(p_1 F_1^{q+1} + p_2 F_2^{q+1} + \cdots + p_N F_N^{q+1} \right)



Fair Resource Allocation Objective







Challenges

 Different fairness/accuracy tradeoffs: different q's

Challenges

 Different fairness/accuracy tradeoffs: different q's

- Different fairness/accuracy tradeoffs: different q's
- Heterogeneous networks, expensive communication

- Different fairness/accuracy tradeoffs: different q's
- Heterogeneous networks, expensive communication

- Different fairness/accuracy tradeoffs: different q's
- Heterogeneous networks, expensive communication

Challenges

- Different fairness/accuracy tradeoffs: different q's
- Heterogeneous networks,
 expensive communication

High level ideas

Challenges

- Different fairness/accuracy tradeoffs: different q's
- Heterogeneous networks,
 expensive communication

High level ideas

 Dynamically estimate the step sizes associated with different q's

Efficient Solver

Challenges

- Different fairness/accuracy tradeoffs: different q's
- Heterogeneous networks,
 expensive communication

High level ideas

 Dynamically estimate the step sizes associated with different q's

Efficient Solver

Challenges

- Different fairness/accuracy tradeoffs: different q's
- Heterogeneous networks, expensive communication

High level ideas

- Dynamically estimate the step sizes associated with different q's
- Allow for low device participation, local updating

Dataset	Objective	Average	Worst 10%	Best 10%	Variance
Synthetic	q = 0	80.8	18.8	100.0	724
	<i>q</i> = 1	79.0	31.1	100.0	472
Vehicle	q = 0	87.3	43.0	95.7	291
	<i>q</i> = 5	87.7	69.9	94.0	48
Sent140	q = 0	65.1	15.9	100.0	697
	<i>q</i> = 1	66.5	23.0	100.0	509
Shakespeare	q = 0	51.1	39.7	72.9	82
	<i>q</i> = .001	52.1	42.1	69.0	54

Dataset	Objective	Average	Worst 10%	Best 10%	Variance
Synthetic	q = 0	80.8	18.8	100.0	724
	<i>q</i> = 1	79.0	31.1	100.0	472
Vehicle	q = 0	87.3	43.0	95.7	291
	<i>q</i> = 5	87.7	69.9	94.0	48
Sent140	q = 0	65.1	15.9	100.0	697
	<i>q</i> = 1	66.5	23.0	100.0	509
Shakespeare	q = 0	51.1	39.7	72.9	82
	<i>q</i> = .001	52.1	42.1	69.0	54

Dataset	Objective	Average	Worst 10%	Best 10%	Variance
Synthetic	q = 0	80.8	18.8	100.0	724
	q = 1	79.0	31.1	100.0	472
Vehicle	q = 0	87.3	43.0	95.7	291
	<i>q</i> = 5	87.7	69.9	94.0	48
Sent140	q = 0	65.1	15.9	100.0	697
	<i>q</i> = 1	66.5	23.0	100.0	509
Shakespe	q = 0	51.1	39.7	72.9	82
	<i>q</i> = .001	52.1	42.1	69.0	54

Benchmark: LEAF (leaf.cmu.edu)

similar average accuracy

Dataset	Objective	Average	Worst 10%	Best 10%	Variance
Synthetic	q = 0	80.8	18.8	100.0	724
	q = 1	79.0	31.1	100.0	472
Vehicle	q = 0	87.3	43.0	95.7	291
	<i>q</i> = 5	87.7	69.9	94.0	48
Sent140	q = 0	65.1	15.9	100.0	697
	q = 1	66.5	23.0	100.0	509
Shakespe	q = 0	51.1	39.7	72.9	82
	<i>q</i> = .001	52.1	42.1	69.0	54

Dataset	Objective	Average	Worst 10%	Best 10%	Variance
Synthetic	q = 0	80.8	18.8	100.0	724
	q = 1	79.0	31.1	100.0	472
Vehicle	q = 0	87.3	43.0	95.7	291
	<i>q</i> = 5	87.7	69.9	94.0	48
Sent140	q = 0	65.1	15.9	100.0	697
	<i>q</i> = 1	66.5	23.0	100.0	509
Shakespe	q = 0	51.1	39.7	72.9	82
	<i>q</i> = .001	52.1	42.1	69.0	54

Benchmark: LEAF (leaf.cmu.edu)

Dataset	Objective	Average	Worst 10%	Best 10%	Variance
Synthetic	q = 0	80.8	18.8	100.0	724
	q = 1	79.0	31.1	100.0	472
Vehicle	q = 0	87.3	43.0	95.7	291
	<i>q</i> = 5	87.7	69.9	94.0	48
Sent140	q = 0	65.1	15.9	100.0	697
	<i>q</i> = 1	66.5	23.0	100.0	509
Shakespe	q = 0	51.1	39.7	72.9	82
	<i>q</i> = .001	52.1	42.1	69.0	54

decrease variance significantly

Dataset	Objective	Average	Worst 10%	Best 10%	Variance
Synthetic	q = 0	80.8	18.8	100.0	724
	q = 1	79.0	31.1	100.0	472
Vehicle	q = 0	87.3	43.0	95.7	291
	<i>q</i> = 5	87.7	69.9	94.0	48
Sent140	q = 0	65.1	15.9	100.0	697
	<i>q</i> = 1	66.5	23.0	100.0	509
Shakespe	q = 0	51.1	39.7	72.9	82
	<i>q</i> = .001	52.1	42.1	69.0	54

Benchmark: LEAF (leaf.cmu.edu)

Dataset	Objective	Average	Worst 10%	Best 10%	Variance
Synthetic	q = 0	80.8	18.8	100.0	724
	q = 1	79.0	31.1	100.0	472
Vehicle	q = 0	87.3	43.0	95.7	291
	<i>q</i> = 5	87.7	69.9	94.0	48
Sent140	q = 0	65.1	15.9	100.0	697
	q = 1	66.5	23.0	100.0	509
Shakespe	q = 0	51.1	39.7	72.9	82
	<i>q</i> = .001	52.1	42.1	69.0	54

increase the accuracy of the worst 10% devices

Benchmark: LEAF (leaf.cmu.edu)

Dataset	Objective	Average	Worst 10%	Best 10%	Variance
Synthetic	q = 0	80.8	18.8	100.0	724
	<i>q</i> = 1	79.0	31.1	100.0	472
Vehicle	q = 0	87.3	43.0	95.7	291
	<i>q</i> = 5	87.7	69.9	94.0	48
Sent140	q = 0	65.1	15.9	100.0	697
	<i>q</i> = 1	66.5	23.0	100.0	509
Shakespe	q = 0	51.1	39.7	72.9	82
	q = .001	52.1	42.1	69.0	54

slightly decrease the accuracy of the best devices

Benchmark: LEAF (leaf.cmu.edu)

on average, reduce the variance of accuracy across all devices by 45%

solving the objective orders-of-magnitude more quickly than other baselines

5011140	<u> </u>	UJ.1	1.J.J	100.0	071
	q = 1	66.5	23.0	100.0	509
Shakespe	q = 0	51.1	39.7	72.9	82
	<i>q</i> = .001	52.1	42.1	69.0	54

slightly decrease the accuracy of the

Fair meta-learning (q-FFL+MAML): fair initializations across tasks

Fair meta-learning (q-FFL+MAML): fair initializations across tasks

Dataset	Objective	Average	Worst 10%	Best 10%	Variance
Omniglot	q = 0	79.1	61.2	94.0	93
	q = .1	79.3	62.5	93.8	86

Dataset	Objective	Average	Worst 10%	Best 10%	Variance
Omniglot	q = 0	79.1	61.2	94.0	93
	<i>q</i> = .1	79.3	62.5	93.8	86

Fair meta-learning (q-FFL+MAML): fair initializations across tasks

More broadly, an alternative/generalization of minimax optimization Many other scenarios

code & paper: OpenReview / <u>cs.cmu.edu/~litian</u>

code & paper: OpenReview / <u>cs.cmu.edu/~litian</u>

Thanks!