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Tilted ERM (TERM) Objective

linear regression

Empirical Risk Minimization
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TERM can increase or decrease the influence of outliers to
enable fairness or robustness



Tilted ERM (TERM) Objective
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Properties: Trade-off between average loss and max-/min-loss

positive f: as f increases, the average loss will increase, and the max-loss will decrease
and the loss variance will decrease => better generalization

negative f: as f increases, the average loss will decrease, and the min-loss will increase
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Properties: Approximation of quantile losses

k-th quantile losses: k-th largest individual loss from { f(x;; 0) } ;<1

e.g., median loss (k = N/2)
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TERM solutions can approximate k-loss solutions (1 < k < N)



TERM solvers

TERM can be solved with a simple modification to batch/stochastic ERM solvers
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2) stochastic case  have some stochastic dynamics to estimate the normalizer of the weights



TERM is widely applicable to a broad range of ML problems

Outlier Mitigation

<0 . . .
Robust Regression/Classification

Class Imbalance

Fair PCA , and many more
Variance Reduction
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Fairness + Robustness

Competitive/Superior performance compared with application-specific approaches



E.g., TERM applied to Robust Classification (¥ < 0)
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E.g., TERM applied to Fair PCA (¢ > 0)

Goal of fair PCA:

low-dimension features
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min-max solution with a
large ¢

—* = min-max (Samadi et al.)

also offer more flexible

tradeoffs between
performance and
fairness
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Future Work

* Other applications and properties of the TERM framework

* Generalization guarantees of the TERM objective with respect to ¢
* Further connections with other risks (DRO, CVaR, IRM, etc)

Paper: OpenReview website

Code: https://github.com/litiang6/TERM
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https://github.com/litian96/TERM
https://github.com/litian96/TERM

