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Tilted	ERM	(TERM)	Objective
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TERM	can	increase	or	decrease	the	influence	of	outliers	to	
enable	fairness	or	robustness
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✤ recovers	a	family	of	objectives	
parameterized	by	t
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min-loss✤ a	smooth	transition	from	min-
loss	to	avg-loss	to	max-loss
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Properties:	Trade-off	between	average	loss	and	max-/min-loss

positive	 :	as	 	increases,	the	average	loss	will	increase,	and	the	max-loss	will	decrease	
and	the	loss	variance	will	decrease	=>	better	generalization	

negative	 :	as	 	increases,	the	average	loss	will	decrease,	and	the	min-loss	will	increase
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Properties:	Approximation	of	quantile	losses

-th	quantile	losses:	 -th	largest	individual	loss	from	k k {f(xi; θ)}i∈[N]

TERM	solutions	can	approximate	 -loss	solutions	( )k 1 ≤ k ≤ N
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e.g.,	median	loss	( )k = N/2
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TERM	solvers

TERM	can	be	solved	with	a	simple	modification	to	batch/stochastic	ERM	solvers

1) batch	case

2)	stochastic	case						have	some	stochastic	dynamics	to	estimate	the	normalizer	of	the	weights						

∇θ R̃ =
N

∑
i=1

wi(t; θ)∇θ f(xi; θ), wi(t; θ) =
etf(xi;θ)

∑j∈[N] etf(xj;θ)

convergence	rate	scales	linearly	with	t
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TERM	is	widely	applicable	to	a	broad	range	of	ML	problems

Fairness	+	Robustness
 < 0

 > 0

t1
t2

			Class	Imbalance	
Fair	PCA	
Variance	Reduction

 > 0t

 < 0t
Robust	Regression/Classification	
Outlier	Mitigation

, and many more

Competitive/Superior	performance	compared	with	application-specific	approaches
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E.g.,	TERM	applied	to	Robust	Classification	( )t < 0
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TERM	is	able	to	
completely	remove	the	

noisy	outliers,	
achieving	the	accuracy	

of	Genie	ERM
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E.g.,	TERM	applied	to	Fair	PCA	( )t > 0

Goal	of	fair	PCA:
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low-dimension	features

loss(L; U) ≈ loss(H; U)

two	groups

TERM	can	recover	the	
min-max	solution	with	a	

large	t
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also	offer	more	flexible	
tradeoffs	between	
performance	and	

fairness



Future	Work
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✤ Other	applications	and	properties	of	the	TERM	framework	
✤ Generalization	guarantees	of	the	TERM	objective	with	respect	to	 	
✤ Further	connections	with	other	risks	(DRO,	CVaR,	IRM,	etc)

t

Paper:	OpenReview	website	

Code:		https://github.com/litian96/TERM

https://github.com/litian96/TERM
https://github.com/litian96/TERM

